1. 简单百科
  2. 紫外线辐射

紫外线辐射

m的紫外辐射由于大气的吸收,所以在空气中不能传播。因此臭氧减少导致的紫外辐射增强也是高度波长依赖的。常用的测量紫外线辐射的有宽带光谱计和光谱辐射计。

简介

紫外辐射就是波长范围约10~400nm的光辐射。在这个波长范围内不同波长的紫外辐射有不同的效应,在研究和应用中,常把紫外辐射划分为:A波段(400~320nm);B波段(320~280nm);C波段(280~200nm);真空紫外波段(200~10nm)。波长小于200nm的紫外辐射由于大气的吸收,所以在空气中不能传播。太阳的紫外辐射是人类接受的紫外辐射的主体,但是由于紫外线在大气传播中的衰减过程,真正照射到地球表面的紫外辐射量只占总辐射量比例的4%。因此在实际应用中,人造紫外光源就显得尤为重要。人造紫外辐射源解决了自然光源(太阳)在时间、空间上的不足。

环境紫外线辐射的测量

尽管臭氧是大气层中极其微量的组分,但它却是大气层中唯一可以吸收波长短于300nm太阳辐射的物质,其吸收系数随波长的减少而增加。臭氧层吸收了来自太阳辐射中的大部分的紫外线B,因为臭氧层的破坏主要引起这一波段的太阳辐射增强,特别是290~315nm波长范围内的UVB辐射,在这25nm的波长范围里,由于臭氧的吸收,其辐射强度以4次幂的速率随波长递减。最常用的宽带仪器是Robertson-Berger(RB)紫外辐射计,其温度系数约0.01/K。RB辐射计的谱响应稳定性在十年以上,当然不同仪器间有些差异,所以在对RB辐射计网的标定重新核实之前,对使用RB辐射计数据得到的变化趋势必须小心地仔细检查。

正因为如此,现有的地表UV辐射资料来源有两个,仪式地基臭氧探测网和卫星臭氧探测系统,由臭氧趋势加上大气的散射和吸收等因素后构造出辐射传输模式,以此来计算紫外辐射状况,虽然模式计算的福照度可能会有误差,不过在无云和低气溶胶条件下臭氧减少与UV辐射增加之间的理论关系已被大量的研究工作所确定。再一个就是RB辐射计网和单站多滤光片仪器的直接测量。

现在根据UV辐射的测量来确定地表UV辐射的变化尤其是长期变化的趋势仍然是困难的,因为它要求有高精度和高稳定度的数据。最近的重要进展是通过优化仪器性能,相互对比和对数据进行再分析来评估数据的质量。不同光谱辐射计之间的几次对比实验显示了各种仪器间存在着重要差异主要表现在太阳光谱急剧变化的短波区。因此,动态范围、杂散光抑制和波长标定向问题是非常严重的。目前,在大于310nm的波长区范围,一致性也不会优于+5%,而在更短的波长区,一致性则更差。这在某种程度上是由于标定的不确定性造成的,这个不确定性来自太阳光谱的谱型随太阳天顶角、柱臭氧量和其它大气条件的不同而改变。

影响

对水生生物的影响

水生生物系统为人类提供了大量的食物,全球人类所有消耗的动物蛋白质中,约有30%以上来自海洋,在很多国家,特别是发展中国家,这个比例还会大大增加。因此,了解太阳UVB辐射增强对水生生态产品的产量有怎样的影响是十分重要的。另外,海洋还在全球变暖的过程中起着决定作用,海洋中浮游生物是大气中二氧化碳的主要汇,对大气中二氧化碳浓度变化趋势起着决定性的作用。

Hader等研究了太阳UVB对衣藻属的一种植物和变形藻属的一种植物运动的效应是,发现UVB能使它们游动现象减弱,辨向本能消弱,从而妨碍东东的浮游生物对变化中的环境条件和可能危险的情况不断作必要的适应。

Takeuchi等研究表明,太阳UVB辐射增强会降低海洋浮游生物的生产率,给复杂的海洋生态系统和人类带来巨大影响,这种海洋生产率的任何降低,无疑将影响全球食物的供应。Worrest也指出,UVB辐射增强将影响许多微生物的生长和节律。Dohler等研究还发现UVB辐射强烈影响固氮过程,从而影响许多重要浮生物数量减少;而某种重要的浮生物数量的减少,将会严重影响到水生生态系统中复杂的食物链及食物的总产量。据测算,大气中臭氧含量损耗16%会导致浮游生物量减少5%,也就是等于全世界每年的渔产量将减少70万吨。

UVB增强会导致海草丰度的下降及在深水层重新分布。UVB强度相对于PAR水平提高时,海草群落可能变得矮小症和贫乏,群体分布消弱,生物物质减少,因此,UVB增强有改变海草群体结构和分布的潜力。

UVB辐射的增加会引起海洋浮游生物、虾、蟹幼体及贝类大量死亡,甚至造成某种生物的灭绝。UVB辐射对鱼、虾、蟹类,两栖纲及其它动物的早期发育阶段有损害作用,最严重的是降低它们的繁殖能力和损害幼体的成长发育。在高纬地区的晚春季节,UVB辐射的增强可能会影响到一些物种,因为UVB辐射的增强恰好发生在它们生长发育的关键阶段,即使UVB辐射少量的增加或短期的波动也会严重地影响较敏感的物种。

对植物矿质营养的影响

Murali等报道,UVB影响大豆吸收磷的速率与使用磷的数量有关,磷较多时,UVB不影响磷吸收,反之,则有影响。Ambler等发现,未经UVB补充照射的棉花中,Zn从子叶运转到幼叶的速度是经UVB照射处理的2倍,这显示UV可抑制Zn在植物体内的运转,机理尚不明了。Dai发现,用UVB处理的水稻,叶子的电导率减小,这种抑制作用将影响水稻根系的吸收能力、植株的营养和水稻的生物产量。

Doughty和Mope发现轮藻紫外线照射后,其细胞膜发生极化;膜阻力也随之下降。由于膜结构的损伤,细胞内Cl-、K+、和Na+、因而大量外渗,而离子的主动吸收却不断下降。wright等用培养的烟草细胞吸收86、Rb+、和14C-、甘露醇后再进行UVB照射,结果在外渗中有大量的86、Rb+、,但无14、C-、甘露醇,因而认为UVB可能破坏了质膜上的某些特定的离子通道,但对细胞的整个结构影响不大。这种看法已为尔后的实验所证实。zill和tolbert发现小麦经UVB处理后,根部细胞K-atp酶活力受到抑制。总的来说,UVB对矿离子的吸收和运转研究尚少。

相关词条

紫外线紫外线(Ultraviolet)是波长比可见光短,但比X射线长的电磁辐射,波长范围在10纳米至400纳米,能量从3电子伏特至124电子伏特之间。它的名称是因为在光谱中电磁波频率比肉眼可见的紫色还要高而得名,又俗称紫外光。1801年德国物理学家里特发现在日光光谱的紫端外侧一段能够使含有溴化银的照相底片感光,因而发现了紫外线的存在。紫外线可以用来灭菌,过多的紫外线进入人体会造成皮肤癌。紫外线是在阳光中发现的,并且在电弧和专门的灯,像是黑光灯,也会并发出紫外线。它可以造成化学反应,并导致许多物质发光或产生萤光。大多数紫外光被归类为非电离辐射。能量较高的紫外线光谱,大约在150纳米(真空紫外线)是电离的,但这种类型的紫外线不具穿透力,会被空气阻挡住 基本解释 自然界的主要紫外线光源是太阳,太阳光透过大气层时波长短于290nm米的紫外线为大气层中的臭氧吸收掉。人工的紫外线光源有多种气体的电弧(如低压汞弧、高压汞弧),紫外线有化学作用能使照相底片感光,荧光作用强,日光灯、各种荧光灯和农业上用来诱杀害虫的黑光灯都是用紫外线激发荧光物质发光的。紫外线还可以防伪,紫外线还有生理作用,能杀菌、消毒、治疗皮肤病和软骨病等。紫外线的粒子性较强,能使各种金属产生光电效应。2 作用机理 紫外线是由原子的外层电子受到激发后产生的。 3 主要分类 紫外线根据波长分为:这里近紫外线(UVA),远紫外线(UVB)和超短紫外线(UVC)。紫外线对人体皮肤的渗透程度是不同的。紫外线的波长愈短,对人类皮肤危害越大。短波紫外线可穿过真皮,中波则可进入真皮。

参考资料


Warning: Invalid argument supplied for foreach() in /www/wwwroot/6gwu.com/id.php on line 283