1. 简单百科
  2. 矩阵分解

矩阵分解

矩阵分解 (decomposition, 因式分解)是将矩阵拆解为数个矩阵的乘积的运算,这些分解方法依使用目的的不同而有所区别。常见的矩阵分解方法包括三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等。其中,最常见的三种分解方法是:1)三角分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解法 (Singular Value Decomposition)。在数值分析中,矩阵分解常常用来实现一些矩阵运算的快速算法。

分解方法

三角分解法

三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵或是排列(permuted) 的上三角形矩阵和一个下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求逆矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。

MATLAB以lu函数来执行lu分解法,其语法为。

QR分解法

QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关。

MATLAB以qr函数来执行QR分解法,其语法为。

奇异值分解法

奇异值分解 (singular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。,其中U和V分别代表两个正交矩阵,而S代表一对角矩阵。和QR分解法相同,原矩阵A不必为正方矩阵。使用SVD分解法的用途是解最小平方误差法和数据压缩。

MATLAB以svd函数来执行svd分解法,其语法为。

参考资料