1. 简单百科
  2. 碳酸盐补偿深度

碳酸盐补偿深度

碳酸盐补偿深度(碳酸根 compensation depth(CCD) )是指海洋中碳酸钙(生物钙质壳的主要组分)输入海底的补给速率与溶解速率相等的深度面,也称碳酸钙补偿深度。它是海洋中的一个重要物理化学界面。海水表层碳酸钙是饱和的。随着水深增大,由于温度降低,CO2含量增加,碳酸钙溶解度增大,至某一临界深度,溶解量与补给量相抵平衡,这一临界深度就是碳酸钙补偿深度。碳酸盐补偿深度海底富含碳酸盐的沉积和非碳酸盐沉积之间的岩相界面。海水到达某一深度时,碳酸根的补给速率和溶解速率可大体得到补偿,故名。

简介

carbonate compensation depth(CCD)

海底富含碳酸盐的沉积和非碳酸盐沉积之间的岩相界面。海水到达某一深度时,碳酸盐的补给速率和溶解速率可大体得到补偿,故名。

大约深海底的一半为钙质软泥所复盖,另一半则为缺少碳酸盐的沉积物所复盖。二者之间的界线大致随等深线变化,是因碳酸盐的溶解速度随海水深度的增加而增高的缘故。这种深度的连线便构成碳酸根线或碳酸盐补偿面,根据补偿物质的不同,补偿深度又有方解石补偿深度、文石补偿深度及有孔虫门补偿深度之分。一般在此补偿面之上保留有大量碳酸盐沉积物,而此面以下则代之以大量非碳酸盐沉积物,主要为红粘土。补偿面的深度和形状因受海区碳酸盐补给量和溶解速率、地形、再沉积作用等的影响而变化。

在全球范围内,碳酸盐补偿面的深度变化幅度在2000米左右。而各大洋不尽相同,如太平洋为4300米、大西洋为4900米、印度洋则为4850米。对其深度和形状的研究,有助于了解构造运动、海平面变化、海洋物理化学环境等的特点及其演变历史。

正文

海洋中碳酸钙(生物钙质壳的主要组分)输入海底的补给速率与溶解速率相等的深度面。这一临界深度就是碳酸钙补偿深度(图1)。

碳酸盐补偿深度 (CCD)在海底沉积物分布特征上有明显反映,浅于这一临界深度的海底,广布白色碳酸钙沉积,在这一深度之下,缺失钙质沉积(为硅质沉积或褐粘土)。因此, CCD犹似海底雪线,是海底沉积物最重要的相界面。有时把这一深度的连线称做碳酸根补偿线(CCL)或碳酸盐补偿面(CCS)简称碳酸盐线。至于碳酸盐溶跃面,是指海洋中碳酸盐物质发生急剧溶解的深度带,也就是海底沉积物中钙质壳保存完好与遭受溶蚀破坏之间的分界面,其位置一般在 CCD之上,或大体相同的深度上。由于翼足类、浮游有孔虫壳和颗石的抗溶能力不同,又可区分出不同的溶跃面,其中翼足类溶跃面最浅,有孔虫溶跃面次之,颗石溶跃面最深。

CCD 的位置是碳酸钙物质供给速率和溶解速率的函数,而这两者又取决于海水肥力、生物生产力、温度和CO2含量(CO2分压)。在深海区,当海水肥力和生产力高时,碳酸钙供给速率超过溶解速率,CCD变深,如赤道辐散带高生产力区,CCD往往超过5000米。但是,靠近大陆的上升流区,尽管肥力和生产力也高,由于陆源物质的稀释作用,以及大量生物活动导致CO2含量的增高,使碳酸根溶解速率明显增大,因而 CCD从洋内向洋缘变浅。由于碳酸钙溶解度随温度升高而降低,故 CCD自赤道向两极升高。现代海洋中CCD平均约4500米,其中大西洋最深,平均为5300米,太平洋最浅,平均只有4400米,印度洋为45添柏岚 Sale.We offers Wholesale Prada Shoes, Gucci Shoes, 阿迪达斯 Shoes, Puma Shoes, etc; Our 普拉达 Sneakers, Gucci shoes, 阿迪达斯 shoes, 彪马 shoes,Mbt Shoes sale,Buy cheap Mbts Shoes,Wholesale Ed hardy Shirts,coogi hoodies.Prada Sneakers,Find Free Shipping,耐克 Air Max 90,Nike Air Max 95,Air Max 97,Nike Air Max 95, Nike Air Max 90s, Nike Air Max 97, Nike Air Max LTD, Prada Shoes, Gucci Sneakers, Gucci Shoes.Wholesale Nike Dunks,Nike Dunks. Air Max 2009 On sale. Christian Audigier hoodies Wholesale.00~5000米。

现代碳酸盐补偿深度是根据海水中碳酸钙含量的实测资料和现代钙质沉积物的分布来确定的。地质时期CCD的深度,则根据研究区沉积岩心中碳酸根和非碳酸盐沉积物之间发生相变的年代,并按板块构造模式中的海底年龄-深度曲线予以确定。在曲线中海底年龄越老,其水深越大。

在地质时期,CCD屡有波动。白垩纪CCD较浅,平均约 3000米。第三纪始新世时CCD仍较浅,在太平洋印度洋分别为3200米和3600米。早渐新世时,由于南极大陆周围出现海冰,开始形成南极底层水,在世界大洋内产生温盐循环,造成海水中CO2减少,导致CCD下降,至渐新世中期达最深值。中新世初期开始, CCD复又上升,至中新世中期达到最高峰(图2)。距今约1000万年以来, CCD再度下降。第四纪期间,随着冰期、间冰期的更替,CCD频繁变动。在太平洋,冰期时CCD下降,间冰期时CCD上升。由于控制因素的不同,大西洋的情况恰好相反,更新世CCD变动旋回 (碳酸根旋回)可与氧同位素升降旋回相对比。由于 CCD的波动状况中包含着海洋古深度、海平面和洋流动态及生物生产力等环境和气候变化的信息,因此它是研究古海洋和古气候的有用手段之一。

参考书目

KJHsü,H.C.Jenkyns,eds,pelagic Sediments on Land and under the Sea,

,Vol.1,Blackwell Scientific Publications,Oxford,1974.

A.T.S.Ramsay,ed.,

,Vol.2,Academic Press,New York,1977.

重碳酸盐

A salt of carbonic acid in which one atom has been replaced; an acid carbonate

含有两个碳酸根的盐类

标定方法

:

用标准盐酸溶液滴定水样时,若以酚酞作指示剂,滴定到等当点时,pH为8.4,此时消耗的酸量仅相当于碳酸盐含量的一半,当再向溶液中加入甲基橙指示剂,继续滴定到等当点时,溶液的ph值为4. 4,这时所滴定的是由碳酸盐所转变的碳酸氢盐和水样中原有的碳酸氢盐的总和,根据酚酞和甲基橙指示的两次终点时所消耗的盐酸标准溶液的体积,即可分别计算碳酸盐和重碳酸盐的含量。

碳酸盐之碳酸锌

外观:白色粉末、无毒、无味。

用途:可用于生产人造丝、化肥行业的脱硫剂、催化剂的主要原料,在橡胶制品、油漆其它化工产品中也可广泛应用,在石油钻井中,本品能与HS反应生成稳定的不溶性ZnS,且该品加入泥浆后不影响泥浆性能,因而可有效的消除HS的污染和腐蚀,用作含HS油气井的缓蚀剂,除硫剂。

碳酸盐性质

碳酸盐和酸式碳酸盐(又称重碳酸盐)大多数为无色的。碱金属和的碳酸盐易溶于水,其他金属的碳酸盐都难溶于水。碳酸氢钠在水中的溶解度较小,其他酸式碳酸盐都易溶于水。

关于金属碳酸盐和碳酸氢盐在水中的溶解性,一般来说,碳酸盐难溶的金属,碳酸氢盐溶解度相对较大;而碳酸盐易溶的金属,碳酸氢盐的溶解度则明显减小。后一现象目前认为是HCO3-离子在溶液中形成了氢键相互缔合,使溶解度减小的缘故。

可溶性碳酸根水溶液中都会水解,使溶液呈碱性。如0.1Μ碳酸钠溶液的pH为11.6,其溶液中存在分步水解平衡:

参考资料


Warning: Invalid argument supplied for foreach() in /www/wwwroot/6gwu.com/id.php on line 283